



### 1 Natürliche Zahlen

### 1.1 Große Zahlen und Zehnerpotenzen

eine Million =  $1\ 000\ 000 = 10^6$ eine Milliarde =  $1\ 000\ 000\ 000 = 10^9$ eine Billion =  $1\ 000\ 000\ 000 = 10^{12}$ 

### 1.2 Zahlenmengen

Menge der natürlichen Zahlen:  $\mathbb{N}=\{1;2;3;4;5;...\}$ 

Menge der natürlichen Zahlen mit der Null:  $\mathbb{N}_0 = \{0; 1; 2; 3; 4; 5; ...\}$ 

Geschweifte Klammern machen deutlich, dass Zahlen zu einer Menge zusammengefasst werden.

34∈ $\mathbb{N}_0$  ,,34 ist ein Element der Menge  $\mathbb{N}_0$  ."

 $13 \notin \{2;4;6;8;10;12;14;...\}$  "13 ist kein Element der Menge der geraden Zahlen."

## 2 Die ganzen Zahlen

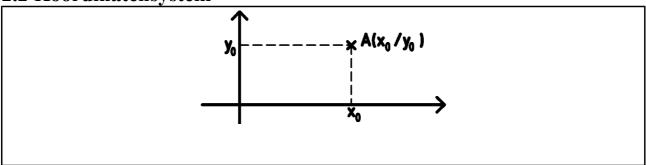
### 2.1 Die Menge der ganzen Zahlen

Zur Menge der ganzen Zahlen  $\mathbb{Z}$  gehören die positiven Zahlen, die negativen Zahlen und die Zahl 0.

Die positiven Zahlen haben das Vorzeichen +.

Die negativen Zahlen haben das Vorzeichen -.

## 2.2 Koordinatensystem

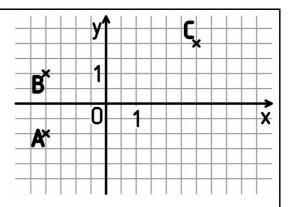




### **Beispiel:**

Lies die Koordinaten von A, B und C ab.

Trage die Punkte D(5/1), E(4/-2) und F(-1/2) im KOSY ein.



## 2.3 Gegenzahl, Betrag

Gegenzahl zu einer Zahl ist die Zahl, die auf dem Zahlenstrahl zur Null symmetrisch liegt.

z. B.: Zur Zahl –2 ist 2 die Gegenzahl; zur Zahl 5 ist –5 die Gegenzahl.

Der Abstand einer Zahl a von der Zahl 0 heißt der Betrag von a. Man schreibt dafür |a|

z. B.: 
$$|6| =$$
;  $|-5| =$ ;  $|4-7| =$ 

# 3 Addition und Subtraktion ganzer Zahlen

3.1 Bezeichnungen beim Addieren und Subtrahieren

 Summe

 a
 +
 b
 =
 c

 1. Summand
 +
 2. Summand
 =
 Wert der Summe

 Differenz

 a
 b
 =
 c

 Minuend
 Subtrahend
 =
 Wert der Differenz



#### 3.2 Terme

Terme bestehen aus Zahlen, Rechenoperationen und Klammern.

z. B.: 
$$(34-7)+4.9$$

Bei der Berechnung von Termen gilt für Reihenfolge der Rechenschritte:

- 1. Was in Klammern steht, wird zuerst berechnet
- 2. Potenzen vor Punktrechnung vor Strichrechnung

Klammern werden von innen nach außen berechnet.

Die zuletzt auszuführende Rechenart legt die Art des Terms fest.

z. B.: Der Term  $(34-7)+4\cdot9$  ist eine Summe.

## 3.3 Addieren und Subtrahieren ganzer Zahlen

Addieren ganzer Zahlen:

#### Gleiche Vorzeichen:

- 1. Addiere die Beträge.
- 2. Gib der Summe das gemeinsame Vorzeichen.

z. B.:

$$5 + 8 =$$

$$(-5) + (-8) =$$

#### Verschiedene Vorzeichen:

- 1. Subtrahiere vom größeren Betrag den kleineren Betrag.
- 2. Gib der Differenz das Vorzeichen des Summanden mit dem größeren Betrag. z. B.:

$$(+5) + (-8) =$$

$$(-5) + (+8) =$$

### Subtrahieren ganzer Zahlen:

Subtrahieren einer Zahl bedeutet dasselbe wie Addieren ihrer Gegenzahl.

z. B.:

$$(+5) - (+8) =$$

$$(+5) - (-8) =$$



## 3.4 Rechengesetze

### Kommutativgesetz:

Für alle ganzen Zahlen a, b gilt: a + b = b + a

### Assoziativgesetz:

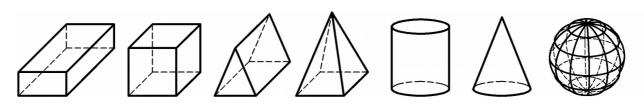
Für alle ganzen Zahlen a, b, c gilt: (a + b) + c = a + (b + c)

Mit Rechengesetzen lassen sich Rechenvorteile ausnutzen.

Terme mit Plus- und Minusgliedern können stets als Summen aufgefasst werden.

Beim Vertauschen von Gliedern in einer Summe sind die Vorzeichen immer mitzunehmen.

# 4 Geometrische Grundbegriffe



Quader Würfel Prisma quadratische Zylinder Kegel Kugel Pyramide

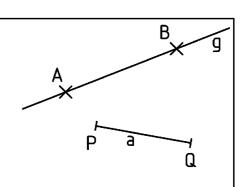
# 4.1 Punkte, Geraden, Strecken

Punkte werden mit großen Buchstaben, Geraden mit kleinen Buchstaben benannt.

Kurzschreibweisen:

Gerade: g = AB Strecke: a = [PQ]

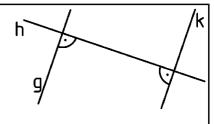
Länge der Strecke a =  $\overline{PQ}$  = \_\_\_ cm



# 4.2 Besondere gegenseitige Lage von Geraden

Gerade g steht senkrecht auf h:  $g \perp h$ 

Gerade g ist parallel zu k: g||k

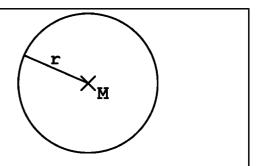




### 4.3 Kreis

Ein Kreis wird durch seinen Mittelpunkt M und seinen Radius r festgelegt.

Die Punkte der Kreislinie haben vom Mittelpunkt genau den gleichen Abstand.



#### 4.4 Vierecke

### Im Parallelogramm

sind einander gegenüberliegende Seiten parallel.

#### **Ein Rechteck**

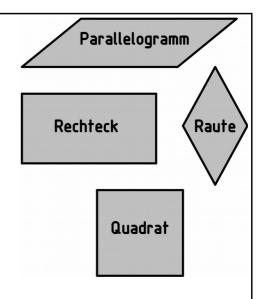
ist ein Parallelogramm, in dem die Seiten aufeinander senkrecht stehen.

#### **Eine Raute**

ist ein Parallelogramm mit gleich langen Seiten.

#### Ein Quadrat

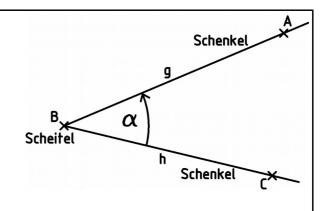
ist ein Parallelogramm mit gleich langen Seiten, die aufeinander senkrecht stehen.



#### 4.5 Winkel

Ein Winkel wird durch seinen Scheitel und seine Schenkel festgelegt.

Die Bezeichnung erfolgt mit griechischen Buchstaben  $(\alpha, \beta, \gamma, ...)$  oder über die Punkte (hier:  $\angle CBA$ ) oder Geraden des Winkels (hier:  $\angle (h;g)$ ).



## Immer gegen den Uhrzeigersinn!



# 5 Multiplikation und Division ganzer Zahlen

5.1 Bezeichnungen beim Multiplizieren und Dividieren

Produkt

a · b = c

1. Faktor · 2. Faktor = Wert des Produkts

Quotient

a : b = c

Dividend : Divisor = Wert des Quotienten

5.2 Rechengesetze

Kommutativgesetz: gilt nur für die Multiplikation!

Für alle ganzen Zahlen a, b gilt: a ·

 $a \cdot b = b \cdot a$ 

Assoziativgesetz: gilt nur für die Multiplikation!

Für alle ganzen Zahlen a, b, c gilt:  $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ 

**Distributivgesetz:** 

Für alle ganzen Zahlen a, b, c gilt:  $(a + b) \cdot c = a \cdot c + b \cdot c$ 

 $(a - b) \cdot c = a \cdot c - b \cdot c$ 

(a + b) : c = a : c + b : c (mit  $c \ne 0$ )

(mit  $c \neq 0$ )

(a - b) : c = a : c - b : c

5.3 Besondere Zahlen: 0 und 1

 $\mathbf{a} \cdot \mathbf{0} = 0 \cdot \mathbf{a} = 0$ 

0: a = 0, aber: Durch 0 kann man nicht dividieren!

 $a \cdot 1 = 1 \cdot a = a$ 

a:1=a

5.4 Potenz

Eine Potenz ist Kurzschreibweise für die mehrfache Multiplikation einer Zahl mit sich selbst:

$$4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^7$$

Dabei ist

4 die Basis

und

7 der Exponent.

Der Exponent gibt an, wie oft die Basis als Faktor auftritt.



## 5.5 Multiplizieren und Dividieren ganzer Zahlen

## Multiplizieren zweier ganzer Zahlen:

- 1. Multipliziere die Beträge.
- 2. Bei gleichen Vorzeichen erhält das Produkt das Vorzeichen + , bei verschiedenen Vorzeichen erhält das Produkt das Vorzeichen .

$$(+5) \cdot (+3) =$$

$$(-5) \cdot (-3) =$$

$$(+5) \cdot (-3) =$$

$$; (-5) \cdot (+3) =$$

### Dividieren zweier ganzer Zahlen:

- 1. Dividiere die Beträge.
- 2. Bei gleichen Vorzeichen erhält der Quotient das Vorzeichen +, bei verschiedenen Vorzeichen erhält der Quotient das Vorzeichen .

$$(+15): (+3) =$$

$$(-15):(-3)=$$

$$(+15):(-3)=$$

$$; (-15): (+3) =$$

Merke: Durch Null darf man nicht teilen.

### 6 Größen und ihre Einheiten

### 6.1 Bezeichnung von Größen

Jede Größe besteht aus Maßzahl und Maßeinheit, z. B. 4 kg, 9 min, 6 m

### Längen:

$$1 \text{ km} = 1000 \text{ m}$$
 $1 \text{ m} = 10 \text{ dm}$ 
 $1 \text{ dm} = 10 \text{ cm}$ 
 $1 \text{ cm} = 10 \text{ mm}$ 

#### Massen:

$$1 t = 1000 \text{ kg}$$
  
 $1 \text{ kg} = 1000 \text{ g}$   
 $1 \text{ g} = 1000 \text{ mg}$ 

#### Zeitdauern:

$$1 d = 24 h$$
  
 $1 h = 60 min$   
 $1 min = 60 s$ 

#### **Geldwerte:**



#### 6.2 Rechnen mit Größen

- 1. Vor dem Addieren und Subtrahieren müssen die Größen in die gleiche Einheit umgerechnet werden.
- 2. Eine Größe wird mit einer Zahl multipliziert (durch eine Zahl dividiert), indem man die Maßzahl mit der Zahl multipliziert (durch die Zahl dividiert) und die Einheit beibehält.
- 3. Der Quotient zweier Größen der gleichen Art (z. B. zweier Längen) ist eine reine Zahl.

Beispiele:

1. 3 m + 5 cm =

2. 7,3 kg : 25 =

3. 5 h 40 min : 20 min =

#### 6.3 Maßstab

Die Angabe Maßstab 1 : 200 in einem Plan bedeutet:

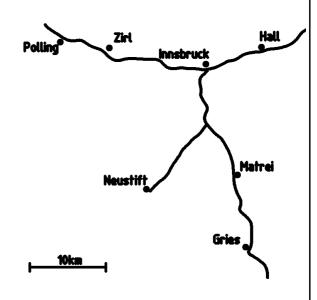
Die Länge in der Wirklichkeit beträgt das 200-fache der Länge im Plan.

Die Länge im Plan ist der 200. Teil der Länge in der Wirklichkeit.

Beispiel: Straßenkarte von Österreich

Bestimme mit Hilfe der 10km Linie unten links den Maßstab der Karte.

Bestimme die Länge der Fahrstrecke von Polling nach Gries. Rechne mit einem Maßstab von 1:500000.





## 7 Größen und ihre Einheiten

### 7.1 Flächeninhalte

Der Flächeninhalt A gibt an, wie groß eine Fläche ist. A = 3 cm<sup>2</sup> bedeutet: Die Fläche ist dreimal so groß wie ein Zentimeterquadrat.



#### 7.2 Einheiten bei Flächeninhalten

| Zur Flächenmessung verwenden wir Quadrate mit den Seitenlängen: | Sie haben die Flächeninhalte: |                   |
|-----------------------------------------------------------------|-------------------------------|-------------------|
| 1 mm                                                            | 1 mm <sup>2</sup>             | Quadratmillimeter |
| 1 cm                                                            | 1 cm <sup>2</sup>             | Quadratzentimeter |
| 1 dm                                                            | 1 dm <sup>2</sup>             | Quadratdezimeter  |
| 1 m                                                             | $1 \text{ m}^2$               | Quadratmeter      |
| 10 m                                                            | 1 a                           | Ar                |
| 100 m                                                           | 1 ha                          | Hektar            |
| 1 km                                                            | 1 km²                         | Quadratkilometer  |

### Umrechnungen:

$$1 \text{ km}^2 = 100 \text{ ha}$$

$$1 \text{ ha} = 100 \text{ a}$$

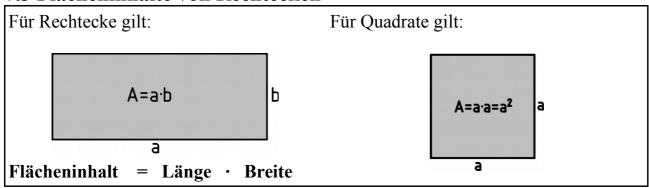
$$1 \text{ a} = 100 \text{ m}^2$$

$$1 \text{ m}^2 = 100 \text{ dm}^2$$

$$1 \text{ dm}^2 = 100 \text{ cm}^2$$

$$1 \text{ cm}^2 = 100 \text{ mm}^2$$

## 7.3 Flächeninhalte von Rechtecken

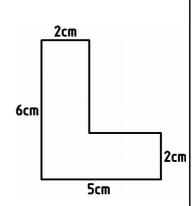




### **Beispiel:**

Bestimme den Flächeninhalt des L rechts durch Zerlegen und Addieren.

Bestimme den Flächeninhalt des L rechts mit der Abzieh-Methode.

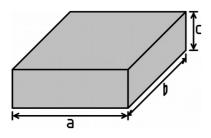


#### 7.4 Oberflächeninhalte

Zur Bestimmung des Oberflächeninhalts O ermittelt man die Flächeninhalte der Begrenzungsflächen und addiert diese.

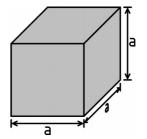
### **Ouader:**

$$O = 2 \cdot a \cdot b + 2 \cdot a \cdot c + 2 \cdot b \cdot c$$
  
= 2 \cdot (a \cdot b + a \cdot c + b \cdot c)



### Würfel:

$$O = 6 \cdot a \cdot a$$
$$= 6 \cdot a^2$$



## **Beispiel:**

Bestimme den Oberflächeninhalt des Quaders rechts.

